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Abstract. This article proposes a novel concept to leverage the time-
consuming labeling process for training object detectors in automated
driving. The approach uses pre-trained probabilistic, well-calibrated ob-
ject detectors for different sensor modalities. Based on the knowledge
about the sensor extrinsics, the probabilistic detections are transformed
from one sensor modality into another. These transformed detections are
then used as pre-labels for the respective sensor modality. However, these
pre-labels are error-prone, such that we propose an additional dedicated
labeling quality assessment. The latter allows us to attach a quality seal
to automatically pre-labeled data sets and is the starting point for inter-
active human-in-the-loop learning.
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1 Introduction

Artificial intelligence and, in particular, machine learning (ML) are the enabling
technologies in autonomous driving. In this context, ML and deep learning tech-
niques are already successfully used for perception, i.e., sensory environment
and object recognition [4]. Training and validating these mostly deep neural
networks, e.g., convolutional neural networks (CNN), requires vast amounts
of labeled data. However, labeling, especially for object detection, is a time-
consuming and, therefore, costly task [17]. In this article, we present an approach
to significantly reduce the labeling effort in the particular application domain of
ML-based object detection for highly automated driving. Our approach considers
that many modern vehicles are equipped with various sensors, including cam-
eras, LiDAR, and RADAR. We exploit this sensor diversity (i.e., the strengths
and weaknesses of the respective sensors [12]) in our approach by transferring
labels between different sensor modalities. First, we train object detectors for
the single sensors. We further use these predictions as so-called pre-labels (i.e.,
imperfect, potentially error-prone labels). These can, in turn, be used to improve
the object detectors of the other sensor modality. Our approach can be under-
stood as semi-supervised cross-domain learning [2], whereas the object detectors



2 M. Bieshaar et al.

are interpreted as multiple error-prone annotators [9]. However, in safety-critical
applications such as highly automated driving, the created labelings must be
quality-checked to ensure that no incorrect concepts are learned.

Contributions: We address this problem by proposing a detailed concept to
automatically generate pre-labelings via cross-domain label transfer for percep-
tion in autonomous driving. Therefore, we identify four major research questions
arising within our concept’s stages and provide ideas for targeting each of them.
We envision our concept as an application-driven starting point for human-in-
the-loop learning. In this context, our concept provides methods leveraging inter-
active learning techniques in object detection, e.g., probabilistic object detectors,
improving the labeling quality, coping with imperfect labels, and decreasing an-
notation effort. As another major contribution, we see the quality assessment
of pre-labelings to support subsequent human-in-the-loop learning processes. In
this sense, we aim to provide a quality seal to pre-labeled data sets, e.g., pre-
labels having an expected mean average precision of 90%.

2 Highly Automated Pre-Labeling

This section describes the four stages of our concept (cf. Fig. 1) and formulates
research questions. In the first stage, we develop probabilistic object detectors.
The second stage aims to improve the calibration of these detectors further.
Subsequently, the probabilistic predictions are interpreted as pre-labels of the
different sensor modalities and optionally fused in the third stage. Finally, the
concept is concluded by the fourth stage, including a labeling quality assessment
based on probabilistic outputs. It serves as a starting point for human-in-the-loop
learning to refine the pre-labels and release them for further model training.
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Fig. 1. Illustration of the proposed highly automated labeling process exemplary shown
for two sensors. Dashed arrows represent optional processes.
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Stage I: Probabilistic Object Detection – How to train probabilistic object
detectors for different sensor modalities? In stage I, we consider pre-trained ob-
ject detectors for different sensor domains, i.e., camera- and LiDAR-based object
detectors [20, 21]. Common object detectors provide point estimates for the clas-
sification probabilities of the object and the coordinates of its 3D bounding box,
i.e., position in space, the yaw angle, and its size [13]. In contrast, probabilis-
tic object detectors provide predictive distributions for all quantities. Starting
from pre-trained CNNs for 3D bounding box detection, e.g., for camera [21]
and LiDAR [20], the main challenge will be a meaningful separation between
aleatoric and epistemic uncertainty [10] without massively increasing computa-
tional complexity during training and inference. Therefore, we aim to leverage
the approach proposed in [14], which enforces specific properties, i.e., smooth-
ness and sensitivity in the feature space learned by a deep neural network. In
this way, we can capture epistemic uncertainty by distributing that features and
aleatoric uncertainty by evaluating the entropy of its predictive distribution.

Stage II: Probability Calibration – How to further improve the calibration
of the probabilistic detectors? In stage II, we aim at improving probabilistic
outputs by the object detectors as a foundation for the estimation of the labeling
quality of the pre-labeling. For example, if the detector outputs a probability for
a car with 90%, this statement should also be true in exactly 90% of the cases.
The same applies to the probabilistic estimation of continuous target values,
e.g., the coordinates of a 3D bounding box. However, deep neural networks
tend to frequently output overconfident predictions, which can be alleviated
through probability calibration methods [3, 15]. We intend to investigate post-
hoc calibration methods, such as temperature scaling [5], and proper scoring
rules to optimize the probabilistic object detectors [8].

Stage III: Label-Transfer and Probabilistic Sensor Fusion – How to
transfer labels between different sensor modalities and combine probabilistic pre-
dictions originating from different sensor modalities? In stage III, we use the
extrinsic sensor parameters to transfer pre-labels from one sensor domain to an-
other. Therefore, we assume that the sensor extrinsics are known in advance. The
transferred pre-labels can be used as labels for the other sensor modality and
vice-versa. Moreover, we also investigate the fusion of probabilistic pre-labels
(i.e., detections) originating from different sensor modalities (cf. stage I and II).
The fusion is realized employing a Bayesian approach (cf. [6]). Therefore, we aim
at examining using a joint probabilistic data-association filter [1] for the assign-
ment of 3D bounding box detection from each sensor modality. Furthermore, we
investigate the usage of Kalman and particle filters for object tracking [19].

Stage IV: Labeling Quality Assessment – How to assess the label quality
of probabilistic 3D bounding box predictions? In stage IV, the aim is to assess
the labeling quality [7, 16] of the obtained pre-labeled data set. For this purpose,
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we use the probabilistic predictions and determine expected values, e.g., with
respect to the number of expected false classifications, the undetected objects,
or the bounding box error. At this point, we want to explore the extent to
which these expectations hold. Based on this, we aim to derive a quality seal
for the pre-labeled data set. In this context, a starting point for the pre-labeling
quality estimation is the ML-based online performance estimation using multiple
sensors [11]. Moreover, we expect to assess whether a camera can be used for
labeling LiDAR and vice-versa and when such a label transfer is useful. Ideally,
the final labeling quality assessment supports human experts to decide whether
individual bounding boxes need to be re-labeled (cf. active learning [18]) or
whether the pre-labeling is of sufficient quality to release the pre-labeled dataset
for further processing such as model training.

3 Conclusion

This article presents a novel concept for highly automated pre-labeling via cross-
domain label transfer for perception in autonomous driving. The novelty of our
concept lies in the label transfer exploiting the strengths and weaknesses of dif-
ferent sensor modalities for object detection. The use of multiple sensors to im-
prove perception is not new. However, the use for pre-labeling (in the context of
3D bounding box detection) in combination with an explicit quality assessment
component under consideration of calibrated probabilistic predictions represents
a novel approach. It allows us to attach a quality seal to pre-labeled data sets.
The quality assessment is the starting point for human-in-the-loop learning and
iterative model improvement. Although our concept focuses on the autonomous
driving domain with LiDAR and camera sensors, it can be extended toward
multiple sensors and possibly different applications involving data from multiple
sensors. Moreover, the presented ideas form a foundation for further investiga-
tions in the area of interactive adaptive learning. For example, the uncertainty
estimates of the developed probabilistic object detectors might be used to derive
novel utility measures for active learning in object detection.
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