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Abstract— In this article, we present two novel methods to
forecast the motion states of cyclists. The states we aim to
anticipate are waiting, starting, moving, and stopping. This
information can be utilized to increase road safety when used
in an automated vehicle. We classify the cyclist motion state for
every step in a discrete-time horizon using a single neural net-
work in the first method. In our second approach, we consider a
two-stage model, i.e., a neural network predicts the current and
the next motion state, and a second quantile regression neural
network (QRNN) forecasts the time to transition between these
two motion states. Our results show that both methods have
advantages and disadvantages. The first method can forecast
multiple changes in motion state while the second is restricted
to a single transition. However, the first method is limited to a
fixed forecast horizon. The two-stage approach, which forecasts
motion and time separately, is more flexible regarding the
forecast horizon, i.e., it can forecast very long as well as short
time spans. Regarding the transition detection performance,
both methods perform equally well. Our experiments show that
the time to transition to the next motion state can be forecasted
accurately, especially for short-time horizons.

I. INTRODUCTION

In recent decades, great efforts have been made to reduce
the number of road users injured or killed in road accidents.
While the number of wounded drivers of motorized vehicles
has decreased significantly, the number of injuries to vul-
nerable road users (VRU) such as pedestrians and cyclists
has stagnated [7]. In Germany, the number of fatally injured
cyclists has even risen recently [23]. This is partly due to the
rising number of cyclists in road traffic and partly because
cyclists benefit less from passive safety features in vehicles
than occupants of motorized vehicles. To counteract this
trend, many researchers and car manufacturers are currently
intensifying their work on driver assistance systems that
actively protect VRU, e.g., by warning the driver of a vehicle
or the vehicle automatically performing braking maneuvers.
For these driver assistance systems, it is necessary to know
the position of the VRU and forecast their future behavior
over a period of 2-3 seconds [10].

In this article, we present two methods to forecast the
motion state of cyclists. In addition to detecting the current
motion state, the goal is to forecast the transition to the fol-
lowing motion state. Thus, potentially dangerous situations,
such as the intention of a cyclist waiting at the side of the
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Fig. 1: Cyclist starting to cross the road in front of bus.

road to enter the road (e.g., Fig. 1), can be recognized early,
and an appropriate measure can be taken in time.

A. Main Contributions and Outline of this Paper

Our main contributions are two methods to forecast the
future motion states of cyclists. While existing methods
focus on either detection of the current motion state or
forecasting the future trajectory of cyclists, our main goal
is to anticipate, i.e., forecast, the future motion state, which
to our knowledge, has not been investigated at the time of
writing.

We present two different approaches. The first approach
classifies motion states for every future time step within a
forecast horizon using a single neural network. The second
approach uses a neural network to predict the transition
between the current and the following motion state, and
a second quantile regression neural network (QRNN) to
estimate the time until the transition occurs.

By evaluating our methods using a large dataset recorded
at an urban intersection, we demonstrate both methods’
advantages and disadvantages. Moreover, we show that both
methods can be used in real-world traffic applications.

The remainder of this article is structured as follows: In
Section II, we present related work. Section III describes
our methodology to forecast the cyclist motion state. The
data acquisition and evaluation methodology are presented
in Section IV, and the experimental results are reviewed in
Section V. Lastly, in Section VI, the main conclusions and
open issues for future work are reviewed.

II. RELATED WORK

In this section, we present different approaches to detect
and anticipate the behavior of VRUs. Over the last years,
VRU intention detection has become an active field of
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Fig. 2: Schematics of the two different approaches for forecasting cyclist motion states.

research. Intention detection can be roughly categorized into
the detection of VRU motion states and the forecasting of
VRU trajectories.

Motion State Detection: The goal of motion state detection
is to estimate the VRU’s current state of motion, such as
waiting or moving. It is usually performed in every time step.
In [12], the authors compare four methods to distinguish
whether a pedestrian stops at the curbside or continues
walking. Two methods based on Kalman filters using infor-
mation about the pedestrians’ past positions are compared
to two methods based on dynamic Gaussian Process Models
(GPDM) and hierarchical trajectory matching using features
derived from dense optical flow. A convolutional neural
network is used in [20] to detect whether pedestrians are
standing or walking and to detect their orientation using
information from image data. In [14], motion history image-
based histogram feature vectors extracted from stereo-image
sequences in combination with a support-vector machine
are used to detect the motion states, i.e., starting, stopping,
waiting, and moving, of pedestrians. In [10], the pedestrians’
past head velocities, in combination with a multilayer per-
ceptron (MLP), are used to detect starting or waiting. While
there are many attempts regarding motion state detection
of pedestrians, there are only a few articles about cyclists’
motion detection. In [25], the authors adapt the approach
from [14] to detect whether a cyclist is waiting or starting.
The authors from [16] make use of 3D poses of cyclists to
distinguish between the motion states waiting and starting.
Further, motion state detection approaches can be found
in [2], [8], [18].

The above mentioned methods have in common that
the goal is to detect motion states or transitions between
motion states at the current time. In this work, we focus on
forecasting the time until a transition between states occurs.

Trajectory Forecast: The goal of VRU trajectory forecasts
is to estimate the VRU’s future positions. It has become
an active field of research over the past years. While the

methods create a different output compared to motion state
detection, similar methods and input features can be used. In
addition to motion state transition, the authors from [12] use
their approaches to forecast pedestrian trajectories for sub-
second time intervals. In [10], a slightly altered version of the
MLP applied for motion state detection is used to forecast
pedestrian and cyclist trajectories 2.5 seconds into the future.
In [19], the authors introduce a trajectory forecast based
on pedestrians’ body joint trajectories in combination with
balanced GPDM to forecast trajectories up to one second
into the future. Other approaches are presented by Pool et
al. in [6] and Kooji et al. [15], in which the authors propose
methods for cyclist path prediction using the local road
topology and other additional context information.

While these methods all create forecasts about the future
movements of VRU, only positions are forecasted, and no
statement is made about the VRU’s future motion state.
Therefore, we see this article as an approach to close the
gap between motion state detection and trajectory forecast.

III. METHODOLOGY

In this article, we investigate two different approaches for
predicting the future motion state of a cyclist. A schematic of
both approaches is depicted in Fig. 2. Both approaches share
a common characteristic because they both use features based
on the cyclist’s past trajectory as input [24]. However, the
approaches could also be adapted to use different input fea-
tures like image sequences of human pose trajectories. The
first method involves a multi-task learning approach [21].
For this purpose, we adopt a time-discrete modeling of the
forecasting lead times t1, . . . , tK , where tK is the maximum
forecasting horizon. We regard the motion state’s prediction
at each lead time tk as a classification problem. Therefore,
we use a neural network with one output head for each lead
time, i.e., multi-task learning. The first approach is referred
to as Motion State Forecasting using Discrete-Time Steps.

One of the major limitations of the approach is the



temporal discretization of the forecast and the fixed fore-
cast horizon, set at design time. Therefore, in the second
approach, we pursue a different modeling. It can be described
as a two-stage procedure. In the first stage, we again consider
a multi-task multi-class problem. But, here, we have only
two output heads. One for the current motion state and one
for the next motion state. In the second stage, we try to
predict the time until the transition from the current state to
the next state with a second neural network, i.e., we try to
predict the time to transition. The latter can be viewed as a
regression problem. The second approach has the advantage
that we can have arbitrary short and long prediction time
horizons. For modeling the uncertainty regarding the time to
transition, we use quantile regression methods, i.e., quantile
regression neural networks (QRNN) [4]. We refer to the
second approach as Motion State and Time-to-Transition
Forecasting.

A. Cyclist Behavior Model

In this article, we describe the cyclist motion using a
state machine (cf. Fig. 3a) consisting of four states: Starting,
Moving, Stopping, and Waiting. In the following, we detail
the discrete modeling of the motions states. In the Waiting
state, the cyclist stands still and remains in a fixed position.
Minor body movements, e.g., turning of the head, are al-
lowed. We define the state by the movement of the bicycle’s
rear wheel, i.e., the Waiting state begins with the rear wheel’s
last movement and ends with the first movement of the rear
wheel. This, in turn, is the beginning of the Starting state. It
can be best described as the phase of acceleration from an
initial movement of the rear wheel until the cyclist no longer
accelerates and moves at an approximately constant velocity.
We identify the end of the Starting state by a threshold on
the cyclist’s acceleration, i.e., here of 0.2m/s2. The Moving
state is the phase of nearly constant velocity between the
Starting and Stopping state. Note, the Moving state might
also comprise phases of acceleration and deceleration. We
define the Stopping state as the phase of deceleration from
the Moving state to complete standstill, i.e., the rear wheel’s
last visible movement. An exemplary motion state sequence
with a stopping, subsequently waiting, and starting cyclist
including velocity is depicted in Fig. 3b.

B. Motion State Forecasting using Discrete Time Steps

In the following, we detail the motion state forecasting
using discrete time steps. With this method, we use a neural
network that predicts the motion state at a fixed set of discrete
lead times t1, . . . , tK . In total, we have K discrete lead
times. We use a deep feed-forward, fully-connected neural
network to predict the motion states. We use one output layer
for each lead time. The output layers are also referred to
as heads of the neural network. Every head contains four
output neurons for each of the four motion states. We obtain
valid probabilities by applying a softmax activation function
to each output head. For training, we use the cross-entropy
loss function. Training the network can be seen as a multi-
task, i.e., multi-label, problem because we have to predict
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Fig. 3: Labeling of the cyclist states based on the trajectory.
Waiting: The cyclist is standing in a place (moving of the
upper body or head is possible). Starting: The cyclists starts
to move from a waiting phase until a state is reached in which
no or only a little acceleration takes place. Moving: The
cyclist is moving, continually. Stopping: The cyclist starts to
decelerate and finally stops.

the motion states for each of the K discrete lead times. The
multi-label cross-entropy loss of the i-th sample is given by

L(yi, p̂i) = −
K∑
k=1

4∑
c=1

y
(c)
i,tk

log(p̂
(c)
i,tk

), (1)

where yi ∈ RK×4 denotes a tensor whose rows are the one-
hot encoded ground truth motion state of the i-th sample
at all lead times. Moreover, p̂i ∈ RK×4 refers to a tensors
whose rows are the one-hot encoded predicted probabilities
of the neural network for the i-th sample at all lead times.
y
(c)
i,tk
∈ R4 and p̂(c)i,tk ∈ R4 denote the entries belonging to the

c-th class (i.e., motion state) at lead time tk of the ground
truth and predicted probability, respectively. We determine
the neural network’s hyperparameter, e.g., network architec-
ture, activation function, learning rate, experimentally using
a grid search. We estimate the time to transition to the next
motion state by evaluating the predicted motion state (i.e.,
maximal class probabilities) of the neural network. Hence,
the time to transition equals the time to a switch in the
predicted classes. This corresponds to a deterministic point
estimate of the time to transition.



C. Motion State and Time-to-Transition Forecasting

In this method, we model the motion state forecasting task
using two stages. In the first stage, we predict the current as
well as the next motion state. We make no assumptions or
statements about when the cyclist will transition to the next
motion state in this stage. In the second stage, we aim to
forecast the time to transition to the next state. Classification
of the current and next state, and the prediction of the time
to transition are done with two separate neural networks.
The first network which is responsible for predicting the
current and next motion state is also referred to as motion
state prediction network. The second network is referred to
as time-to-transition network.

The motion state prediction network is a feed-forward,
fully-connected neural network with two output heads having
four output neurons (one neuron for each motion state).
Again, we have a multi-task problem. The network’s training
is widely done in analogy to the procedure described in
Section III-B. Instead of K lead times, we only have two
“lead times”, i.e., outputs.

The time-to-transition network is also a feed-forward
network. The neural network’s goal is to predict a continuous
quantity, namely the time to the next transition. It is thus a
regression task. We use probabilistic forecasting to account
for the uncertainty [9]. In our case, probabilistic forecasting
is about issuing predictive distributions over the cyclist’s
time to transition. We use quantile regression (QR), as
introduced by Koenker and Basset [13]. QR is widely used
in many domains, mainly because of its ability to represent
arbitrary predictive distributions in a non-parametric way.
The predictive distribution is represented by a discrete set
of quantile levels, e.g., 5 % 10 %, 20 %, . . . 80 %, 90 %,
95 %, and 99 % quantile. The integration of QR with neural
networks is referred to as QRNN [4]. The QRNN has a
dedicated output neuron for each quantile level to represent
the predictive distribution.

To train the time-to-transition network, i.e., the QRNN,
we use the quantile loss (also referred to as pinball loss
or absolute tiled value function). The quantile loss is an
asymmetric weighting of positive and negative prediction
errors using a tilted form of the absolute value error function.
It is defined for a particular quantile value τ . Then, given an
observed time to transition toi and the predicted value of
the τ -th quantile ŷi of the i-th sample, the quantile loss is
defined as follows

sτ (toi , ŷi) =

{
τ |ŷi − toi |, (ŷi − toi) ≥ 0

(1− τ) |ŷi − toi |, else. (2)

We use this loss function to adjust the neural network’s
parameters, i.e., one loss function for each discrete quantile
level. The issued predictions of the neural network corre-
spond to the τ -th quantiles of the underlying predicted time-
to-transition distribution. In contrast to the first method (cf.
Section III-B), this time-to-transition estimate is probabilis-
tic.

Fig. 4: Trajectories recorded at the research intersection.

IV. DATA ACQUISITION AND EVALUATION

A. Data Acquisition

To train and evaluate our methods, we use the data set from
[1], which was created at a public research intersection at the
University of Applied Sciences Aschaffenburg in Germany.
The data set consists of cyclist head trajectories recorded
using a wide-angle stereo camera system with a frame rate
of 50 fps. The cyclist head positions are used since studies
have shown that they can serve as an early indicator to detect
cyclist intentions [11]. The data set consists of 1329 trajecto-
ries of cyclists crossing the intersection (see Fig. 4). For each
trajectory, the motion state labels Waiting, Starting, Stopping,
and Moving are provided. The beginning and end of the
state Waiting are annotated manually, where the beginning
is marked after the rear wheel of the stopping bicycle comes
to a halt, and the end is marked when the rear wheel starts
moving again when the cyclist starts. The remaining states
are labeled automatically (cf. Fig. 3). The states Starting and
Stopping are labeled during the acceleration or deceleration
phases after or before the Waiting state. Moving is labeled
between Starting and Stopping, while the cyclist moves
with nearly constant velocity. The trajectories are split into
samples consisting of input positions and output classes for
model training and evaluation. The output samples for the
Motion Forecasting using Discrete Time Steps consists of
a tensor of size 4 × 125, i.e., the one-hot encoded active
motion state over the next 2.5 s sampled with 50Hz. The
output samples for the Motion State and Time-to-Transition
Forecasting consists of the currently active motion state, the
state to which the cyclist will transition, and the time between
the two states. The distribution of motion states, i.e., classes,
for training the neural networks is depicted in Fig. 5. Waiting
is over-represented due to long waiting times at the traffic
lights.

B. Evaluation

For the evaluation, we differentiate between the two
methods. For Motion Forecasting using Discrete Time Steps
approach, we evaluate the 125 forecasted time steps using
F1 and Brier score as metrics for classification performance
(cf. [2] for details). We use the same metrics for the Motion
State and Time-to-Transition approach; however, instead of
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Fig. 5: Class distribution of motion states in data set.

discrete time steps, we evaluate the detection of the current
and the forecast of the next state. Additionally, we calculate
the error of the forecasted and actual time to transition
between states.

The F1 score is used to evaluate how well the method
can distinguish between different motion states, taking into
account true positive (tp), false positive (fp), and false
negative (fn) classifications, and is given by

F1 =
tp

tp + 0.5 · (fp + fn)
. (3)

In addition to the F1 score, the Brier score measures the
quality of the probability of the classified value. The Brier
score is mainly used for binary problems and deals with
the predicted probabilities. The Brier score is negatively
oriented, meaning that a smaller Brier score is better than
a larger [3]. We calculate a separate Brier score for each
state c:

BSc =
1

N ·K
N∑
i=1

K∑
k=1

(p̂
(c)
i,tk
− y(c)i,tk)

2, (4)

with K being the index of the maximal lead time tK , and
p̂
(c)
i,tk

and y(c)i,tk as the probability and ground truth value of the
i-th sample, the c-th state with lead time tk. Let, N denote
the total number of samples.

Reliability refers to whether the issued predictive distribu-
tion is correct, i.e., whether the estimated frequency of the
predictive distribution matches the observed frequency.

A probabilistic forecast with probability P is reliable if
the forecasted state fits the ground truth state in P times of
all cases. To assess the reliability of the forecasts regarding
the states, we use the decomposition of the Brier score [22]
into reliability (RELc), resolution (RESc), and uncertainty
(UNCc) for each state c:

BSc = RELc − RESc + UNCc. (5)

More details on the decomposition and the terms involved
can be found in [22].

Regarding the evaluation of the QR forecast we evaluate
whether the estimated frequency of the predictive distribution
matches the observed frequency. We do this by creating
Q-Q-plots (see [5]), i.e., we calculate how many times the
true value is below a particular quantile divide by the total
number of particular values. Additionally, we consider the
continuous ranked probability score (CRPS) to assess the
quality of the issued predictive time-to-transition distribu-
tions [17]. The CRPS for a deterministic forecast corresponds
to the absolute error, i.e., mean CRPS (mCPRS) and mean
absolute Error (MAE), respectively. This property of the
CRPS allows us to compare both motion state forecasting
methods (as detailed in Section V-C).

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results. For
evaluation, we use the data set described in Section IV-A.
We test our approaches on 20 % of the cyclists, which are
split in advance. The remaining 80 % of cyclists are used for
training and hyperparameter optimization. For the latter, we
split 20 % of the training data set.

We use features derived from a sliding window segmen-
tation of the cyclists’ past head trajectory as features for
both approaches. We use a sliding window length of 2 s
and a sliding window step size of 20ms. We approximate
the trajectory in the sliding window using a polynomial
approximation with orthogonal basis functions. The orthog-
onal expansion coefficients of the polynomial approximation
are, in a least-squares sense, the best estimators of mean,
slope, curvature of the approximated trajectory. We use these
orthogonal expansion coefficients as features for our neural
networks in both approaches. We refer to [2] for a detailed
description.

A. Motion State Forecasting using Discrete Time Steps

In this section, we detail the experimental findings regard-
ing motion state forecasting using discrete time steps. We
perform a coarse grid search to optimize the neural network’s
hyperparameters, e.g., the number of hidden layers, and
learning rate. We use the Brier score as our optimization
criterion.

The best neural network found has two hidden layers with
2500 and 100 neurons, the hyperbolic tangent as activation
function and uses for training a batch size of 1000 sliding
window segments, and a learning rate of 0.5 · 10−5.

The results of the approach are depicted in Fig. 6a. We
see that the F1 score deteriorates with increasing lead time.
This is particularly evident for the motion states Starting
and Stopping. This effect is probably due to the large class
imbalance in the data set. Waiting and Moving together
comprise about 85 % of the data set. Moreover, Waiting and
Moving are long coherent segments. This is reflected in the
prediction of the neural network, e.g., if the cyclist is Waiting
and there are no current indicators for Starting the network’s
prediction is most likely Waiting which is correct in most of
the cases.
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Fig. 6: Results in terms of F1 (higher is better) and Brier
score (lower is better) for motion state forecasting using
discrete time steps.

The Brier score deteriorates for higher lead times, espe-
cially for Waiting and Starting. The Brier score for Moving
and Stopping remains approximately constant. Stopping is
rarely correctly predicted for larger time horizons. However,
the models predict Stopping with a relatively small probabil-
ity, leading to a slightly improved Brier score due to the
under-representation of the Stopping class. We depict the
reliability of the model’s predictions in terms of the Brier
score decomposition (cf. Eq. 5) for different lead times in
Tab. I. We see the model is well-calibrated, even for larger
lead times.

In Fig. 7, we depict a motion state forecast for a cyclist
about to transition from Stopping to Waiting. We see that the
transition from Stopping to Waiting is detected well.

RELc 0.0 s 0.5 s 1.0 s 1.5 s 2.0 s 2.5 sBSc

Waiting 0.0001 0.0003 0.0007 0.001 0.0005 0.0003
0.013 0.024 0.040 0.055 0.069 0.083

Starting 0.0001 0.0002 0.0007 0.0010 0.0006 0.0004
0.021 0.029 0.042 0.054 0.066 0.078

Moving 0.0005 0.0005 0.0004 0.0003 0.0003 0.0003
0.041 0.042 0.043 0.045 0.047 0.049

Stopping 0.0002 0.0001 0.0002 0.000007 0.0001 0.0001
0.034 0.037 0.036 0.033 0.031 0.027

TABLE I: Reliability (RELc) and Brier (BSc) score for
different lead times.
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Fig. 7: Example motion state forecast for transition from
Stopping to Moving using discrete time steps approach. The
ground truth motion state is depicted in green, i.e., right axis
of the plot.

B. Motion State and Time-to-Transition Forecasting

In this section, we review our experimental findings re-
garding our novel two-stage motion state forecasting method-
ology. Again, we optimize the hyperparameters of the neural
networks involved using a coarse grid search. The best
network for classifying the current and next motion state
(i.e., the motion state prediction network) has two hidden
layers with 500 and 50 neurons. It is trained using a batch
size of 1000 and a learning rate of 0.5 · 10−6. As before,
we observe that the current motion state is better predicted
than the next motion state (cf. Tab. II). Moreover, we also
see from the Brier score’s decomposition that the predictions
are calibrated, i.e., reliable.

For the QRNN (i.e., the time-to-transition network), we
use the following hyperparameters: One hidden layer with
100 neurons and rectified linear activation functions. The
network is trained with a batch size of 1000 and a learning
rate of 10−6. We consider the quantile levels 1 %, 5 %, 10 %,
20 % . . . , 90 %, 95 %, and 99 %. We perform a reliability
analysis to see whether the predictive distribution is properly
calibrated. The results of this investigation are depicted in
the Q-Q-plot in Fig. 8. We see that the issued predictive
distributions are well-calibrated.

The QRNN predicts the time to transition well in the
short term; however, the predicted distributions have a large
variance for longer time horizons. In Fig. 9, we depict
an example QRNN forecast for a transition from Stopping
to Waiting. From the cumulative density function’s (CDF)
slope, we can see that the predictive distribution is very dense
at the ground truth transition.

State Waiting Starting Moving Stopping

BSc
current 0.0127 0.0196 0.0407 0.0344

next 0.0832 0.0793 0.0511 0.0294

RELc
current 0.000111 0.000167 0.000331 0.000125

next 0.000437 0.000590 0.000415 0.001137

F1
current 0.988 0.814 0.861 0.648

next 0.926 0.487 0.826 0.118

TABLE II: Brier (BSc) score, the Reliability (RELc), and
the F1 for each motion state of the motion state and time-
to-transition forecasting approach.
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Fig. 8: Results of reliability analysis, i.e., Q-Q-plot of
time-to-transition network. The blue dotted line depicts the
calibration of the QRNN model and the orange dashed line
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Stopping to Waiting. The CDF of the QRNN’s prediction is
given by the black dotted line with the dots being the quantile
levels. The green line, i.e., right axis of the plot, denotes the
true motion state.

C. Comparison of Approaches

In this section, we compare both approaches to cyclist
motion state forecasting. For this purpose, we first look at
the ability of the two approaches to forecast transitions and,
in the second step, we examine the quality of the predicted
time to transitions. The results of the first analysis, i.e., the
approaches’ ability to detect motion state transitions within
the next 2.5 s, are depicted in Fig 10. We use confusion
matrices, also referred to as transition detection matrices,
for this purpose. We see that both approaches perform
approximately equally well. However, still in many cases,
the transition is not detected, although there is a transition
within the considered forecasting horizon. This confirms the
investigations of Hubert et al. in [11] that many cyclists
change their state (e.g., start to move) without any sign being
recognizable in advance. Only very shortly before the actual
starting a prediction about the change of the state of motion
can be made based on the past movement.

The comparison of the two approaches with respect to the
time to transitions is more difficult. The time to transitions of
the first approach extracted from the class probabilities are
deterministic, and the predictions of the QRNN are proba-
bilistic. Therefore, in the first step, we interpret the QRNN
prediction as a deterministic forecast (i.e., we consider the
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Fig. 10: Transition detection matrices for the motion state
forecasting using discrete time steps (on the left) and motion
state and time-to-transition forecasting (on the right) with T
and NT denoting Transition and No Transition, respectively.

50 % quantile). In the second step, we examine the MAE and
the mean CRPS to compare the approaches. The distribution
of the residuals of the two approaches are shown in Fig. 11.

We see that the time to transition derived from the discrete
time step approach is relatively unbiased, even for higher lead
times. However, we see that a second maximum is created,
which is around 1.25 s, i.e., half of the maximum forecast
horizon. This suggests that a kind of averaging is taking
place here, i.e., several motion states become similarly likely
for higher lead times. This is probably due to the fact that
larger time horizons are difficult to predict based on past
trajectories. Regarding 50 % quantile, the QRNN tends to
overestimate the time to transition, as it can be seen in the
residuals. This holds true for all considered time intervals.
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Fig. 11: Histograms of time-to-transitions residuals (pre-
dicted - true time). The histograms are smoothed by a kernel
density estimation with a Gaussian kernel. The red and blue
curves correspond to of the discrete time steps approach and
QRNN, respectively. The density is scaled by 103.



Waiting Starting Moving Stopping
to Starting to Moving to Stopping to Waiting

Discrete Time Steps [s] 198,10 1380,00 420,00 269,10(MAE)
QRNN [s] 561.40 343.33 350.39 410.03(mCRPS)

TABLE III: Mean absolut error and mean CRPS (mCRPS).

This might indicate that the QRNN predictions are reliable
but rather vague and less specific. The spread of the first
approach is much higher than the spread of predictions
of the QRNN. The MAE and mean CRPS for different
motion state transitions are depicted in Tab. III. This gives
a slight intuition which of both methods predicts better for
what motion state transitions. From the two studies, we can
conclude that the discrete time step approach performs better
on average, although it sometimes overestimates by a large
margin. The probabilistic method tends to be vaguer but does
not always perform as well.

VI. CONCLUSIONS AND FUTURE WORK

In this article, we present two new approaches that go be-
yond motion state detection. These two approaches forecast
cyclists’ future motion states in real-world traffic scenarios
using the cyclist’s past trajectory. The first method forecasts
motion states for discrete time steps over a forecast horizon
of 2.5 s. The second method detects the current and the next
motion state and estimates the time between the two using a
probabilistic forecasting method. Both approaches can detect
upcoming motion state transition reliably. However, both
methods struggle to anticipate motion state transitions which
are further in the future. This result confirms prior empirical
investigations on early motion transition indicators [11].
Though for short forecast horizons, the methods can forecast
movement transitions using the past trajectory reliably. In
particular, the discrete time steps method has proven to be
the best choice, as it has a lower mean time to transition
forecasting error. The probabilistic method using QRNN
performs slightly worse; however, it can also express time to
transition prediction uncertainties. Moreover, it is not limited
to the number of discrete forecasting time steps and can
predict arbitrarily long prediction time horizons.

Our future work will focus on using these motion state
forecasts as additional information to improve cyclist trajec-
tory forecasting. In this context and to improve the forecasts,
we will also investigate the usage of more expressive features
such as features derived from camera images [25] or body
poses [16]. Furthermore, we plan to extend our approach to
forecasting the cyclist’s lateral state machine, allowing us to
forecast turning motions.
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