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Need for Active Learning
The inherent process of data labelling for 
Autonomous Driving applications has high 
potential redundancies. Active Learning is a 
promising concept to optimize the 
redundancies by parsing through an unlabeled 
data pool and selecting the most-informative 
data to be labelled. Therefore, achieving 
higher model performance with a pre-defined 
labelling budget. Further, it helps to adapt to a 
shift in domain, tackle bias during training, 
handle edge-cases, and minimize Human-in-
the-Loop interaction.

Modelling Epistemic Uncertainty
Epistemic Uncertainty refers to the inherent 
lack of knowledge or information resulting in 
inaccuracies in the detections. We develop the 
strategies using the following acquisition 
methods to capture the epistemic uncertainty 
of Faster R-CNN [1]:
• Objectness Scores of Region Proposals 

consider object/background detections
1) Map-level Entropy (1D-E and 2D-E)
2) Map-level Mutual Information (MMI)
3) Spatial Mutual Information (SMI)

• Class Probabilities of Bounding Boxes
1) Prediction-level Entropy (E)
2) Prediction-level Mutual Information (MI)
3) Prediction-level Clustering (CL)

To reach approximate Bayesian Inference, MC 
Dropout is implemented in Faster R-CNN [1] 
architecture for T forward passes.

Active Learning Pipeline
We conduct a study to find the best active 
learning approach to train Faster-RCNN [1] with 
minimum training data using BDD100K [2]. The 
aim is to achieve peak performance on a pre-
defined test data as compared to a random 
selection.

Conclusions
Based on the model architecture being trained 
on and the nature of dataset for selection, a 
suitable Active Learning approach improves 
the model performance while keeping an equal 
labelling budget. The extent of improvement 
depends on the size of the training dataset, as 
a larger random sample would select also 
more diverse data the effect becomes smaller.
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Figure 1: Architecture of Faster-RCNN with DropBlock implementation 
in Region Proposal Network (RPN) and Dropout implementation in 
Fully-Connected (FC) Layers 
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Figure 3: Performance improvement of Faster-RCNN on BDD100K 
dataset for different methods as compared to a random selection
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Figure 2: Active Learning Pipeline for training Faster-RCNN 
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