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Motivation Qualitative Results on SAIL-VOS
Amodal perception allows to hallucinate the
full shape of occluded objects. In automated
driving, knowing at all times the precise
location of all instances Is safety-relevant.
Prior art [1,2] considers amodal segmentation
only on images, however, temporal information
Is an important cue for solving partial and full
occlusions. Our new baseline for end-to-end
amodal video instance segmentation (VIS) is to
our knowledge the first end-to-end trainable
method that provides not only image-level, but

also video-level results for amodal VIS.
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Figure 1: Qualitative results of VATrack (bottom) compared to
MasRjoint [4]. VATrack detects and tracks all instances consistently
across frames, while MasRJoint cannot exploit temporal context and
thus, fails to detect severe occlusions. (© TUBS)

Towards a Challenge for Amodal VIS on
Automotive Data

We aim to generate amodal data using the
CARLA simulator [3]. We use the custom depth
stencil to visualize occlusions. Additionally, we
extend the technique of Bogdoll et al. [4] to
generate deterministic trajectories.

Experimental Setup

We train our amodal VIS network VATrack [3]
on an adapted version of the SAIL-VOS [1]
dataset coined SAIL-VOS-cut. This adaptation
gets rid of jump cuts in the video but does not
affect the video content.

Results on Image Level and on Video Level
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context can improve amodal segmentation
quality on both image- and video-level. We
show works towards a challenge for amodal
VIS on automotive data using the CARLA
simulator.

Table 1: Amodal image-level results on SAIL-VOS-cut for image-based

and video-based methods with v" indicating whether visible (V) or
amodal (A) masRs are predicted. Best results in bold. (© TUBS)

Table 1 shows that temporal context can
Improve results and that joint prediction
mostly improves the image-level results.
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Table 2: Amodal video-level results on SAIL-VOS-cut for video-based
methods with v’ indicating whether visible (V) or amodal (A) masks are
predicted. Best results in bold. (© TUBS)

Table 2 shows that also on video-level the joint
prediction improves amodal VIS results.
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Figure 3: Our proposed VATrack method for end-to-end amodal video instance segmentation can simultaneously predict amodal and visible

instance masks, while also tracking the instances throughout the sequence. The instance segmentation is based on Mask R-CNN, the
tracking is based on QDTrack and MaskTrack R-CNN. (© TUBS )
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For more information contact:
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