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Safety of complex, automated driving systems

Source: National Transportation Safety Board. Collision between vehicle controlled by developmental automated 
driving system and pedestrian Tempe, Arizona march 18, 2018. 2019. 
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Complexity, and Automated Driving: Holistic Perspectives on Safety Assurance." 
Computer 54, no. 8 (2021): 22-32.
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We need to acknowledge the inherent complexity 
of the task, environment and system…

… and its impact on our ability to provide 
convincing safety assurance arguments



The impact of complexity

Complexity inevitably leads to uncertainty in the safety 
assurance argument
Uncertainty: Any deviation from the unachievable ideal of completely deterministic knowledge of the relevant system*

*W. E. Walker et al. “Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision 
Support”. In: Integrated Assessment 4.1 (Mar. 2003), pp. 5–17. ISSN: 1389-5176.  DOI: 10.1076/iaij.4.1.5.16466.

Uncertainty in our 
understanding of the 
environment and 
task

Uncertainty in whether 
our observations of 
the environment are 
accurate and complete

Uncertainty in how our 
system  (especially AI/ML)  
processes inputs and 
makes decisions



Existing Standards – Functional Safety (ISO 26262)

Absence of unreasonable risk due to hazards caused by 
malfunctioning behaviour of E/E systems

Risk associated with 
malfunctioning behaviour

Random hardware errors
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Systematic errors (HW and SW)
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…is a pre-requisite for AI/ML-based automated driving systems



Existing Standards – Safety of the intended 
functionality (ISO 21448)
Absence of unreasonable risk due to hazards resulting from functional 
insufficiencies of the intended functionality or by reasonably 
foreseeable misuse by road users

…interpretation and operationalization required for AI/ML-based systems

Functional 
insufficiency

Insufficiencies of 
the specification

Performance 
insufficiencies

Caused by



Insufficiencies of the specification
An ML interpretation

§ Developing a complete set of safety requirements
§ How to demonstrate the completeness of requirements for an inherently 

complex task?

§ Which KPIs/Metrics can be used to measure the conformance to the 
requirements?

§ How to derive target values (validation targets) for these metrics?

§ Data as the specification 
§ How to argue the integrity and appropriateness of the data?

§ How to demonstrate coverage of the operational domain and requirements?

§ Requires a detailed understanding of the operational domain 
and technical system context

§ How to deal with rare but critical events ?

§ How to deal with distributional shift / changes in the environment over time?



Performance insufficiencies
An ML interpretation

§ Machine learning: Optimizes model parameters through 
computational techniques, such that the model’s behaviour 
reflects the training data (as an approximation of the target 
function)

§ Performance insufficiencies of ML: gaps between theoretically 
optimal function and the trained model:

§ Characterized as lack of generalization and robustness, bias, etc.

§ Related to the concepts of task complexity/learnability, sample 
complexity and model expressiveness

§ How to ensure the model meets its requirements and 
demonstrate this with a sufficient level of confidence?

§ Which verification data to use?

§ Exacerbated by further properties of ML models such as lack of 
explainability and prediction uncertainty



Emerging standards for Safe AI

ISO/IEC TR 5469* – Functional safety & 
AI Systems

Safety
IEC 61508 – Functional safety of E/E 
systems

AI
ISO/IEC 22989 – AI Definitions

ISO/IEC TR 24028 – AI 
Trustworthiness

ISO/IEC TR 24029 – NN 
Robustness,
ISO/IEC DTS 4213.2* ML 
Classification performance,
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ISO/IEC JTC 1/SC 42
Information Technology –
Artificial intelligence

* Under development

Road vehicle specific
ISO 21448 – Safety of the 
intended functionality

ISO 26262 – Functional 
safety

ISO PAS 8800* –
Safety & AI ISO TR 4804 / TS 5083* 

– Safety for Automated 
Driving Systems

ISO/TC 22/SC 32 Road Vehicles – Electrical and 
electronic components and general system 
aspects

ISO PAS 8800:
§ Operationalization of SOTIF concepts for AI/ML-based vehicle functionality, ISO 26262 as pre-requisite

§ Not restricted to automated driving functions or specific ML techniques



Concepts of ISO PAS 8800

§ Definition of a fault model and safety-
related properties used to define detailed 
safety requirements of the AI systems

§ Definition of an iterative AI safety lifecycle, 
including continuous safety assurance during 
operation

§ Definition of development and architectural
measures for achieving the safety-related 
properties of AI systems

§ Definition of a Data-lifecycle and associated 
safety-related data properties

§ Safety analyses and structured assurance 
arguments for justifying acceptable residual 
risk associated with the AI system

Derivation of safety 
requirements on the ML 

system

Evaluation of confidence 
in the assurance 

argument

Operation and 
continuous assurance

Insufficient confidence 
in the assurance 

argument

Insufficiencies or 
changes in the 

environment detected 
during operation

Data specification and 
collection for training 

and test

Selection of ML 
approach and design of 
architectural measures 

to minimise and mitigate 
insufficiencies

Evaluation of 
performance with 

respect to the derived 
safety requirements

Evaluation of the impact 
and causes of 
performance 

insufficiencies (safety 
analysis)

Requirements cannot be achieved 
and must be renegotiated with 

system stakeholders

Loosening of operating restrictions and assumptions 
on the environment, as uncertainty in the input 

space, data and model are continuously  and 
systematically reduced

Negotiation of safety requirements 
with stakeholders from the 
encompassing system

Integration of the assurance argument 
into the encompassing system-level 
argument

Coordination with 
system-level 
monitoring activities



ISO PAS 8800 – Data related considerations

§ Dataset lifecycle:
§ Apply a systematic approach to the gathering, 

creation, analysis, verification, validation 
management and maintenance of datasets used in 
the development of the ML system

§ Identify which properties of the datasets have an 
impact on the safety requirements of the ML 
system

§ Dataset safety analysis:
§ Identify dataset errors that may impact the safety 

requirements

§ Define measures to prevent or mitigate these errors

§ Requires application-specific interpretation 
and consideration of the integrity and 
sufficiency of the data

Dataset implementation:
Data acquisition/synthesis

Data augmentation
Data annotation

Safety requirements 
on the ML system

ML system integration 
and testing

Data collection during 
testing and operation

Dataset 
requirements

Dataset design Dataset verification

Dataset validation

Dataset safety 
analysis

Dataset maintenance

Dataset lifecycle

Common dataset errors

Lack of coverage of the input space

Lack of representation of safety-relevant edge cases 

Distribution does not match the target input space

Dependencies on the data acquisition method (e.g. camera type, 
geographic, temporal dependencies)

Data fidelity (e.g., sensor noise, accuracy of synthetic data)

Errors in the meta-data / labelling

Lack of independence between training and verification datasets



What’s next

§ Safety assurance of ML-based safety-relevant functions 
requires managing complexity and uncertainty in:

§ The task and environment

§ Data

§ and the system (from sensors to ML-models)

§ First generation of standards and regulations will provide 
guidance on important principles for achieving an acceptable 
level of residual risk…

§ …but will require (a lot of) application and ML technology-
specific interpretation

§ For many realistically complex tasks, an appropriate 
combination of safety assurance methods have yet to be 
found



Open research questions

• How safe is safe enough?
• Defining the Operational Design Domain as a basis for design and 

test
• Operationalizing abstract requirements into measurable properties

• Engineering safe AI/ML-based systems
• Safety-grade datasets with demonstrable properties
• Selection and optimization of AI/ML approaches for safety-critical 

perception and planning tasks
• Analysing the impact of uncertainty within the system
• Design of monitoring and redundancy measures for compensating 

for uncertainty in sensors and AI components

• Arguing the safety of AI/ML-based systems
• V&V of perception and planning functions
• Continuous, automated safety assurance
• Demonstrating confidence in evidence and assurance arguments

»Any sufficiently advanced 
technology is indistinguishable 
from magic«

Arthur C. Clarke (1917-2008)
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