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Safety of complex, automated driving systems
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We need to acknowledge the inherent complexity
of the task, environment and system...

... and its impact on our ability to provide
convincing safety assurance arguments



The impact of complexity

Complexity inevitably leads to uncertainty in the safety
assurance argument

Uncertainty: Any deviation from the unachievable ideal of completely deterministic knowledge of the relevant system*

Inaccuracies & noise in

Scope & unpredictability Heuristics or machine

i i environmental sensors and . . .
of operational domain and learning techniques with

critical events o signal processing unpredictable results

Uncertainty in our Uncertainty in whether Uncertainty in how our
understanding of the our observations of system (especially Al/ML)
environment and the environment are processes inputs and
task accurate and complete makes decisions
AN
ISO
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*W. E. Walker et al. “Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision
Support”. In: Integrated Assessment 4.1 (Mar. 2003), pp. 5-17. ISSN: 1389-5176. DOI: 10.1076/iaij.4.1.5.16466.



Existing Standards — Functional Safety (ISO 26262)

Absence of unreasonable risk due to hazards caused by
malfunctioning behaviour of E/E systems

Risk associated with

malfunctioning behaviour

Random hardware errors Systematic errors (HW and SW)
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...Is a pre-requisite for Al/ML-based automated driving systems
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Existing Standards - Safety of the intended
functionality (ISO 21448)

Absence of unreasonable risk due to hazards resulting from functional
insufficiencies of the intended functionality or by reasonably
foreseeable misuse by road users

Trioaerin “~Functional
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- cve mitigate reasonably foreseeable

indirect misuse (3.17)

Insufficiencies of
the specification

. Funqtlpnal Caused by
insufficiency

Performance
insufficiencies

...interpretation and operationalization required for Al/ML-based systems



Insufficiencies of the specification
An ML interpretation

= Developing a complete set of safety requirements

= How to demonstrate the completeness of requirements for an inherently
complex task?

= Which KPIs/Metrics can be used to measure the conformance to the
requirements?

= How to derive target values (validation targets) for these metrics?

= Data as the specification
= How to argue the integrity and appropriateness of the data?
= How to demonstrate coverage of the operational domain and requirements?
= Requires a detailed understanding of the operational domain
and technical system context
= How to deal with rare but critical events ?

= How to deal with distributional shift / changes in the environment over time?




Performance insufficiencies
An ML interpretation

= Machine learning: Optimizes model parameters through
computational techniques, such that the model's behaviour
reflects the training data (as an approximation of the target
function)

= Performance insufficiencies of ML: gaps between theoretically
optimal function and the trained model:

= Characterized as lack of generalization and robustness, bias, etc.

= Related to the concepts of task complexity/learnability, sample
complexity and model expressiveness

= How to ensure the model meets its requirements and
demonstrate this with a sufficient level of confidence?

= Which verification data to use?

= Exacerbated by further properties of ML models such as lack of
explainability and prediction uncertainty




Emerging standards for Safe Al

ISO/IEC JTC 1/SC 42
Information Technology —
Artificial intelligence

ISO/IEC 22989 — Al Definitions

ISO/IEC TR 24028 - Al
Trustworthiness

ISO/IEC TR 24029 - NN
Robustness,
ISO/IEC DTS 4213.2* ML

Classification performance,

Narrow — Scope - Broad

ISO/TC 22/SC 32 Road Vehicles - Electrical and
electronic components and general system
aspects

Road vehicle specific

IEC 61508 - Functional safety of E/E 1SO 26262 - Functional ISO 21448 - Safety of the
systems @ » safety intended functionality
: e

ISO/IEC TR 5469* — Functional safety & ; o

4
AAlSystems e
o Aldystems Mt S |SO PAS 8800* -
Safety & Al ISO TR 4804 / TS 5083*

& — Safety for Automated

* Under development Driving Systems

ISO PAS 8800:
= Operationalization of SOTIF concepts for Al/ML-based vehicle functionality, ISO 26262 as pre-requisite Ké?)
I
A4

= Not restricted to automated driving functions or specific ML techniques



Concepts of ISO PAS 8800

= Definition of a fault model and safety-
related properties used to define detailed
safety requirements of the Al systems

= Definition of an iterative Al safety lifecycle,
including continuous safety assurance during
operation

= Definition of development and architectural
measures for achieving the safety-related
properties of Al systems

= Definition of a Data-lifecycle and associated
safety-related data properties

= Safety analyses and structured assurance
arguments for justifying acceptable residual
risk associated with the Al system

Negotiation of safety requirements

with stakeholders from the

. encompassing system
N

Integration of the assurance argument
into the encompassing system-level

argument

system-level

A

Derivation of safety
el requirements on the ML
system

Data specification and
collection for training
and test

Selection of ML
approach and design of
architectural measures

to minimise and mitigate
insufficiencies

&

Evaluation of the impact
and causes of
performance

insufficiencies (safety
analysis)

Evaluation of
performance with
respect to the derived
safety requirements

A

Loosening:ofoperatlng restrictions and assur}\pt\'ons
on the Ienvironment, as uncertainty in the input
space'. data and model are continuously :and

: systematically reduced H

A 4

A 4

~

Evaluation of confidence

in the assurance -

argument

Operation and
continuous assurance

Coordination with

monitoring activities

Requirements cannot be achieved
and must be renegotiated with

system stakeholders

Insufficient confidence
in the assurance
argument

Insufficiencies or
changes in the

environment detected
during operation

Al: {Assumptions
on the input space}

A2: {Assumptions
on the system
context}

A3: {Risk associated with

systematic and random hardware

faults has been addressed}

G2: Potential insufficiencies of
the specification of the ML
system have been addressed

G3: Training and verification datasets

G1: The ML system satisfies its
allocated safety requirements
within the defined context

S1: Functional insufficiencies
have been identified, minimised or
mitigated during specification,
design and operation

G4: Performance insufficiencies
have been addressed in the
design of the ML system

are sufficient to achieve and

demonstrate the required level of
performance

—>

C1: {Definition of the
functionality}

C2: {Safety
requirements allocated
to the ML system}

€3: {Causes of
functional
insufficiencies}

Gé: Insufficiencies du

GS5: Performance with respect
to the safety requirements has
been demonstrated

ring

operation are detected and
mitigation measures defined

e
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ISO PAS 8800 - Data related considerations

= Dataset lifecycle:

=  Apply a systematic approach to the gathering,
creation, analysis, verification, validation
management and maintenance of datasets used in
the development of the ML system

= |dentify which properties of the datasets have an
impact on the safety requirements of the ML
system

= Dataset safety analysis:

= |dentify dataset errors that may impact the safety
requirements

= Define measures to prevent or mitigate these errors
= Requires application-specific interpretation

and consideration of the integrity and
sufficiency of the data

Safety requirements Data collection during ML system integration
on the ML system testing and operation ERRCale]

Dataset Dataset maintenance Dataset validation

requirements Z\

Dataset safety
Dataset design ERENSS Dataset verification

Dataset implementation:
Data acquisition/synthesis
Data augmentation
Data annotation

Dataset lifecycle

Common dataset errors

Lack of coverage of the input space

Lack of representation of safety-relevant edge cases
Distribution does not match the target input space

Dependencies on the data acquisition method (e.g. camera type,
geographic, temporal dependencies)

Data fidelity (e.g., sensor noise, accuracy of synthetic data)
Errors in the meta-data / labelling

Lack of independence between training and verification datasets

e
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What's next

Safety assurance of ML-based safety-relevant functions
requires managing complexity and uncertainty in:

= The task and environment
= Data

= and the system (from sensors to ML-models)

= First generation of standards and regulations will provide
guidance on important principles for achieving an acceptable
level of residual risk...

= _..but will require (a lot of) application and ML technology-
specific interpretation

= For many realistically complex tasks, an appropriate
combination of safety assurance methods have yet to be
found




Open research questions

« How safe is safe enough?

» Defining the Operational Design Domain as a basis for design and
test

» Operationalizing abstract requirements into measurable properties

« Engineering safe Al/ML-based systems
- Safety-grade datasets with demonstrable properties

+ Selection and optimization of Al/ML approaches for safety-critical
perception and planning tasks

* Analysing the impact of uncertainty within the system

» Design of monitoring and redundancy measures for compensating
for uncertainty in sensors and Al components

»Any sufficiently advanced
technoldyy is indistin_éjuishablee

* Arguing the safety of Al/ML-based systems fromdagic « )
« V&V of perception and planning functions Cél'; e (1917-2008) .
« Continuous, automated safety assurance ) <c Y

- Demonstrating confidence in evidence and assurance arguments
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Thank you.

Making lives ) and

Prof. Dr. Simon Burton

Convenor ISO TC22/SC32/WG14 - Safety and Al
Honorary Visiting Professor, University of York
simon.burton@safer-complex-systems.de




